Chance-Constrained Approaches for Multiobjective Stochastic Linear Programming Problems
نویسندگان
چکیده
منابع مشابه
Improved Integer Programming Approaches for Chance-Constrained Stochastic Programming
The Chance-Constrained Stochastic Programming (CCSP) is one of the models for decision making under uncertainty. In this paper, we consider the special case of the CCSP in which only the righthand side vector is random with a discrete distribution having a finite support. The unit commitment problem is one of the applications of the special case of the CCSP. Existing methods for exactly solving...
متن کاملOptimization Approaches for Solving Chance Constrained Stochastic Orienteering Problems
Orienteering problems (OPs) are typically used to model routing and trip planning problems. OP is a variant of the well known traveling salesman problem where the goal is to compute the highest reward path that includes a subset of nodes and has an overall travel time less than the specified deadline. Stochastic orienteering problems (SOPs) extend OPs to account for uncertain travel times and a...
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملSolving multiobjective linear programming problems using ball center of polytopes
Here, we aim to develop a new algorithm for solving a multiobjective linear programming problem. The algorithm is to obtain a solution which approximately meets the decision maker's preferences. It is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution. Numerical examples and a simulation study are used to illu...
متن کاملDuality for Linear Chance-constrained Optimization Problems
In this paper we deal with linear chance-constrained optimization problems, a class of problems which naturally arise in practical applications in finance, engineering, transportation and scheduling, where decisions are made in presence of uncertainty. After giving the deterministic equivalent formulation of a linear chance-constrained optimization problem we construct a conjugate dual problem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Operations Research
سال: 2012
ISSN: 2160-8830,2160-8849
DOI: 10.4236/ajor.2012.24061